本文采用的英格恩产品: Entranter-R4000
Inhibition of CISD1 alleviates mitochondrial dysfunction and ferroptosis in mice with acute lung injury
Affiliations
- 1 Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China; Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, The first affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou 423000, Hunan Province, PR China.
- 2 Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, The first affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou 423000, Hunan Province, PR China.
- 3 Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China; Department of Critical Care Medicine, The First People’s Hospital of Chenzhou, The first affiliated Hospital of Xiangnan University, Xiangnan University, Chenzhou 423000, Hunan Province, PR China. Electronic address: litao.7@163.com.
- PMID: 38377860
- DOI: 10.1016/j.intimp.2024.111685
Abstract
The NET family member, CDGSH iron-sulfur domain-containing protein 1 (CISD1), is located in theoutermembrane of mitochondria, where it regulates energy and iron metabolism. CISD1 has vital functions in certain human diseases; however, its function in acute lung injury (ALI) is unknown. ALI pathogenesis critically involves mitochondrial dysfunction and ferroptosis, which might be regulated by CISD1. Therefore, we investigated CISD1’s function in mitochondrial dysfunction and ferroptosis regulation in lipopolysaccharide (LPS)-induced ALI. We found that CISD1 was upregulated in LPS-induced ALI,and silencing Cisd1 prevented cell apoptosis and increased cell viability. When CISD1was inhibited by mitoNEET ligand-1 (NL-1) there was a significant mitigation of pathological injury and lung edema, and reduced numbers of total cells, polymorphonuclear leukocytes, and a decreased protein content in the bronchoalveolar lavage fluid (BALF). Moreover, inhibition of CISD1 markedly decreased the interleukin (IL)6, IL-1β, and tumor necrosis factor alpha (TNF-α) levels in the lungs and BALF of ALI-model mice. Silencing of Cisd1 prevented LPS-induced mitochondrial membrane potential depolarization, cellular ATP reduction, and reactive oxygen species (ROS) accumulation, suggesting mitochondrial protection. ALI activated ferroptosis, as evidenced by the increased lipid-ROS, intracellular Fe2+ level, reduced Gpx4 (glutathione peroxidase 4) expression, and the glutathione/glutathione disulfide ratio. Interestingly, inhibition of CISD1 reduced LPS-induced ferroptosis in vivo and in vitro. In conclusion, inhibition of CISD1 alleviated mitochondrial dysfunction and ferroptosis in LPS-induced ALI, identifying CISD1 as possible target for therapy of LPS-induced ALI.
Keywords: Acute lung injury; CISD1; Ferroptosis; Iron-sulfur protein; Mitochondria.