本文采用的英格恩产品: 增强型ECL发光液
Ezrin interacts with L-periaxin by the “head to head and tail to tail” mode and influences the location of L-periaxin in Schwann cell RSC96
Affiliations
- 1 Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China.
- 2 Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; Institute of Clinical Medicine and Department of Cardiology, Renmin hospital, Hubei University of Medicine, Shiyan 442000, China.
- 3 Department of Pathology, The First Affiliated Hospital, Shanxi Medical University, Taiyuan 030001, China.
- 4 Chemical and Biological Engineering College, Taiyuan University of Science and Technology, Taiyuan 030006, China.
- 5 Key Laboratory of Chemical Biology and Molecular Engineering, Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China. Electronic address: yaweishi@sxu.edu.cn.
- PMID: 31931020
- DOI: 10.1016/j.bbagen.2020.129520
Abstract
In the peripheral nervous system (PNS), Schwann cells (SCs) are required for the myelination of axons. Periaxin (PRX), one of the myelination proteins expressed in SCs, is critical for the normal development and maintenance of PNS. As a member of the ERM (ezrin-radxin-moesin) protein family, ezrin holds our attention since their link to the formation of the nodes of Ranvier. Furthermore, PRX and ezrin are co-expressed in cytoskeletal complexes with periplakin and desmoyokin in lens fiber cells. In the present study, we observed that L-periaxin and ezrin interacted in a “head to head and tail to tail” mode in SC RSC96 through NLS3 region of L-periaxin with F3 subdomain of ezrin interaction, and the region of L-periaxin (residues 1368-1461) with ezrin (residues 475-557) interaction. A phosphorylation-mimicking mutation of ezrin resulted in L-periaxin accumulation on SC RSC96 membrane. Ezrin could inhibit the self-association of L-periaxin, and ezrin overexpression in sciatic nerve injury rats could facilitate the repair of impaired myelin sheath. Therefore, the interaction between L-periaxin and ezrin may adopt a close form to complete protein accumulation and to participate in myelin sheath maintenance.
Keywords: Ezrin; Interaction; L-periaxin; Myelination; Schwann cells.